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Acoustic wave propagation in Earth leads to perturbations in the geomagnetic field [i- 
3]. The study of electromagnetic signals provides additional information on both the seis- 
mic source and the rocky state (in particular, its electrical conductivity). In theoretical 
studies one consideres magnetic perturbations due to Rayleigh surface waves having the highest am- 
plitude at large distances from the surface [4-7]. Thus, in [5] was investigated a quasi- 
harmonic Rayleigh wave in an external magnetic field, and in [6] - perturbations due to sur- 
face waves initiated by linear and point sources. 

In the present study we calculate magnetic perturbations near a source of longitudinal 
spherical waves for any reduced potential function of elastic displacements. We investigate 
the various mechanisms of appearance of an electromagnetic signal. We analyze the effect of 
diffusion of the generated currents, and single out the term describing local magnetic per- 
turbations near the elastic wave front. 

Consider a homogeneous elastic space with electrical conductivity o I for z < 0 and 02 
for z > 0. The medium is located in a uniform external magnetic field H =H0ez. A spheri- 
cal longitudinal elastic wave is generated at moment of time t = 0 in the lower half-space, 
while the wave source is a spherical radiator of radius R0, whose center is located at depth 
z 0 (Fig. i). 

We calculate the perturbation of the external magnetic field, caused by the motion of 
conducting layers of the medium in the elastic wave. Assuming that the perturbation gener- 
ated is weak, i.e., 5H ~ H << H 0, within the quasistationary approximation we write the 
equations 

~H/Ot = rot [wH O ] ~ D,,2AH, divH ~ 0~ D,, 2 = (p0~,,~)-** (1 )  

where  Dz, 2 a r e ,  r e s p e c t i v e l y ,  t h e  d i f f u s i o n  c o e f f i c i e n t s  o f  m a g n e t i c  p e r t u r b a t i o n  f o r  t h e  
l ower  and u p p e r  h a l f - s p a c e .  The v e l o c i t y  f i e l d  v i s  assumed t o  be a known f u n c t i o n  o f  c o o r -  
d i n a t e s  and o f  t i m e .  T a k i n g  i n t o  a c c o u n t  t h e  a x i a l  symmet ry  o f  t h e  p r o b l e m ,  we u s e  a c y l i n -  
d r i c a l  c o o r d i n a t e  s y s t e m  z ,  r w i t h  c e n t e r  a t  t h e  p o i n t  O. E q u a t i o n s  (1 )  a c q u i r e  in  t h i s  
c a s e  t h e  fo rm 

SHr [~ @ (i ~Hr l Hr O2H,, ] au r 
0t = D , , ~ L  "~7"\'-~--r 7 - - " ~ - +  ~ J + H ~  Oz'; (2 )  

o---T = D ,  2 L T - W  ~ -~-~ ] + - - ~ - j  + -V--~/ rur; 

0~ (4) l 0 ( r H r ) +  = 0  Y ar -~- 
(v  r i s  t h e  p r o j e c t i o n  o f  t h e  r a d i a l  v e l o c i t y  o f  t h e  medium on t h e  p o l a r  r a d i u s  r ) .  I n  a 
l o n g i t u d i n a l  s p h e r i c a l  wave v r i s  e x p r e s s e d  in  t e r m s  o f  t h e  r e d u c e d  d i s p l a c e m e n t  p o t e n t i a l  
f(~): 

~P0r( R0) ~,, = - - > -  /+  -R-), R = V ~ + ( ~ + ~ o )  ~ ( R o < ~ < R , = R o + ~ t ) .  (5) 

Here ~ = (cs - R)/R 0 + i, cs is the velocity of longitudinal elastic wave, and the dot de- 
notes differentiation with respect to ~. The shape of the function f is determined by the 
boundary conditions on the surface of the elastic radiator and at the front of the longitu- 
dinal wave. In what follows it is assumed that the elastic properties of both media are 
identical, thus excluding from treatment the wave field reflected from the wave boundary. 
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Fig. 1 

The contribution of reflected elastic waves to magnetic perturbations can be accounted for 
separately. 

We apply the Fourier transform to Eqs. (2)-(4). We note that the Fourier component (5) 
can be represented as (R ~ R0) 

f O e~R A ( k ) = - - R ]  ff](~)e~hn~ ( 6 )  Ur = ure ~t dt = A(k) Or 8 ' 

(k  = ~ / c ~ ) .  I n  e x p r e s s i o n s  ( 6 )  we c a n  u s e  t h e  w e l l - k n o w n  Weyl r e p r e s e n t a t i o n  

=-- ~ qdq ( 7 )  e ikn ik 3 H ~  1)(krq)exp[iklz + z o ] V l ~ ]  V I - - - ~  R 2 ~ ' 

w h e r e  H0 ( 1 )  i s  t h e  H a n k e l  f u n c t i o n  o f  t h e  f i r s t  k i n d ,  and a r g o t  - - q ~ =  n/2 f o r  q > 1. Tak-  
i n g  into account the shape of expression (7), we seek the Fourier components of the magnetic 
perturbations in the form 

Y~ = S h~ (z, q, k) Hi  1) (krq) dq, H= = S h~ (z, q, k) H~ ~> (krq) dq. (8)  

Substituting ( 6 ) - ( 8 )  into (2)-(4), we obtain a system of equations, among which the follow- 
ing are independent: 

" 2 HoA (k) kaq 3 eblZ+~01, b = ik ]/1 q'-} (9)  
hz -- ~41,2hz 2bD1,2 

h: + qkh~ = O, u~,2 = ]/q~k ~ -  iklq,2, lq,2 = cffD~,a ( 1 0 )  

( t h e  p r i m e  d e n o t e s  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  t o  z ) .  The f u n c t i o n s  h z ,  h v m u s t  be c o n t i n u -  
ous  a t  z = 0 and z = - z  0. A l s o  r e q u i r i n g  t h a t  h z and h r t e n d  t o  z e r o  f o r  [ z [  § ~ ,  we f i n d  
t h e  s o l u t i o n  o f  ( 9 ) ,  ( 1 0 ) :  

h= = Cze ulz + ale -b(z+%) 

h~ = C~e ~lz + Cae -• + ale ~(z+z~ 

hz  C4e - x 2 z  b{z-l-Zo) 
= + a ~ e  

(z < - -  Zo), 

( - - Z o < Z < O ) , ,  

(z>o) .  

(11) 

Here we used the notation 

bz o 
e , ( 1 2 )  

The function h r can be determined from (ii) by means of (i0). 

b"l ~zo hal (~1 - • e - ~ z .  + ("2 - ~1)(b + ~_) 
CI=C2+ ~, e ' C2 •215215 •215 

C3 bat -• 2bal - -  
...... e ~ C 4 -- e •176 "JF 

gl  R1 .-!- 24 2 

~_ (al - -  a2) (~1 - -  b) bz 0 HoA (k) kSq a 
z 1-4-•2 e , a1'2 = 2D 1 ,2b(k- ik l ) '  

while on the real axis ReKI,2 > 0. Substituting (Ii), (12) into (8), we have a solution of 
the problem in the Fourier representation. 

The integrals (8) are calculated approximately for large distances r, using the asymp- 
totic expression for the Hankel function for kr >> i. For z _> 0, we obtain the expressions 

; j~" ttoA Bk 5/2 iBk 3./2 df  (z, k, q) dq B--~ , 
Hz ~ ] / ~  F (z, k, q) dq, H~ = ~ dz q ' n 1 

--co - - o o  
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= { 2e_• k (k~ -- kf) (• --  b) e-• z 

k"ebiZ+Z~ I 

Consider the case k I > k 2. For k > 0 we carry out cuts in the complex q plane from 
the branching points of the roots of the expressions: -+ql = (ikl/k) I/2, +-q2 = (ik2/k)I/2, 
+qa = i, as is shown in Fig. 2. Then Re<l, 2 > 0 everywhere, except for the sectors confined 
by the cut-off lines ci, c 2 and by the dashed lines. The range of values of the variable q, 
where Reb < 0, is confined by the branch cut c 3 and the dashed-dotted line. 

We investigate the function Hz for z 0 = 0. Equation (13) contains exponents of the 
functions fl = ikrq - ~2z and f2 = ikrq + bz, having extrema at the points q4 = (ik2/k) I/2r/ 
R and qs = r/R, respectively, located on the selected branch of the Riemann surface. We 
place the integration contour in the upper half-plane, so that it passes throughthe saddle 
points in the directions 0~ = -z/8, 0 s = -~/4 (curve 1 of Fig. 2). Denoting by H I the inte- 
gral calculated along this path by the steepest descent method, we find the approximate ex- 
press ion 

Br~{ ik~lfzexP(--IIV'------i~) [ k(kl--k~) 
H~=-y-r(k_~kO(l/klR~l,.~ k2_i_]/~/,.) 2 kl(,~_ik,, ) • (14) 

( )] " i X e ~i14 kR2,!r 2 -- ik 2 ~- ~ k 1 (k -- ik2) eihR ' R = F - ~  -5 z 2. 

Here  t h e  l a s t  t e r m  d e t e r m i n e s  t h e  c o n t r i b u t i o n  o f  t h e  n e i g h b o r h o o d  o f  t h e  p o i n t  q s ,  w h i l e  
t h e  r e m a i n i n g  t e r m s  a r e  due  t o  t h e  n e i g h b o r h o o d  o f  t h e  p o i n t  q4 .  

I n  t h e  c a s e  z = 0 t h e  e x p o n e n t s  i n  ( 1 3 )  o f  t h e  f u n c t i o n s f 3  = i k r q  - < l z 0  and f4  = i k r q +  
bz0 h a v e  e x t r e m a  a t  t h e  p o i n t s  q~ = ( i k ~ / k )  ~ / ~ r / R  and  q7 = r / R  (R = V ~ ) "  D e f o r m i n g  

t h e  i n t e g r a t i o n  c o n t o u r  so  t h a t  i t  p a s s e s  t h r o u g h  t h e  s a d d l e  p o i n t s  0 s = - ~ / 8  and 07 = - ~ / 4  
( p a t h  2 i n  F i g .  2 ) ,  we o b t a i n  

Hf-- = -~3 I 2Sok~12 exp (-- R ~ f ~ )  A-!~- e ~hR 

(k.~(k--ikl)k(kl--kf) [ ]/k--ik~Rf/r~--i]/kZo/r o ] ) }  " 
X 1 + V ~ - s  , R=  ]/ 'F+ s~, 

w h e r e  i t  i s  a s sum e d  t h a t  k 1 > k ~ R f / r  2. The f i r s t  t e r m  i n  ( 1 5 )  i s  r e l a t e d  t o  t h e  n e i g h b o r -  
hood  o f  t h e  p o i n t  q s ,  and  t h e  s e c o n d  i s  due  t o  t h e  p o i n t  q7 .  I f  k 2 ~ 0,  ( 1 5 )  m u s t  be s u p p l e -  
m e n t e d  by t h e  t e r m  ( 1 8 ) ,  r e l a t e d  t o  t h e  b y p a s s  o f  t h e  b r a n c h  c u t  c 2. 

E q u a t i o n s  ( 1 4 )  and  ( 1 5 )  a r e  n o t  v a l i d  f o r  z ,  z 0 § 0 ,  s i n c e  i n  t h i s  c a s e  t h e  s a d d l e  
p o i n t s  q4-q~  a p p r o a c h  t h e  b r a n c h i n g  p o i n t s  q z ,  q2 ,  qa .  We i n v e s t i g a t e  t h i s  c a s e  s e p a r a t e l y ,  
p u t t i n g  z = z 0 = 0.  We d e f o r m  t h e  o r i g i n a l  c o n t o u r  f r o m  a b o v e  i n  s u c h  a manne r  t h a t  t h e  i n -  
t e g r a t i o n  i s  c a r r i e d  o u t  a l o n g  b r a n c h  c u t s  ( c u r v e  3 o f  F i g .  2 ) .  S i n c e ,  b e s i d e s  b r a n c h  
p o i n t s ,  t h e r e  a r e  no o t h e r  s i n g u l a r i t i e s  i n  t h e  q - p l a n e  i n  t h e  i n t e g r a n d  e x p r e s s i o n ,  t h e  i n -  
t e g r a l  a s  a w h o l e  r e d u c e s  t o  c o n t r i b u t i o n s  o f  b r a n c h  c u t s .  We p a r a m e t r i z e  t h e  b r a n c h  c u t s  
c~_,2 in the form Vq~--q~,~ = p exp (3vil8),where p is a real variable, while on the left-hand 
shores p < 0, and on t~e right-hand ones p > 0. Transforming in H z (13) to the variable p 
and transforming the integral to the interval 0, ~, after several transformations we obtain 
an expression determining the contribution of the branch cut c2: 

= 2 -5 k~b(k--~k>) X (16) H% V~ (~ - ~) (~- ~) 0 

3~i k X q~/~pe exp ikrq ~ -~ - )  ap, 

r ex 3~ 1 ~/~ b [ t  -- q~ p~ 3~ l ~1~ q = I. q~ -5 P P-T-]  ' = ik ~ --  exp--%--] , 

•  p~exp ~ k " 

W h i l e  f o r  p < p0 = [r -- k ~ ) / k ] ~ / ~  ( t h e  r e g i o n  b e l o w  t h e  u p p e r  p r i m e d  l i n e  i n  F i g .  2)  
Re<~ > 0 ,  f o r  p > P0 R e ~  < O. At  t h e  s a d d l e  p o i n t  p = 0 t h e  p r e - e x p o n e n t i a l  f a c t o r  i n  ( 1 6 )  
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vanishes; therefore we seek an extremum of the function f = ikrq(p) + 2 inp. For kr >> i, 
the saddle point is p, = (2/kr)i/2(kz/k) I/4 Expending f(p) in the neighborhood of this 
point, we have 

~xp f (p) ~ - =  g ~ ~ p  - r / k i lo  - - ~  + ~ (p -- p,)~ 
k r  " " 

S u b s t i t u t i n g  (17)  i n t o  (16)  and i n t e g r a t i n g  o v e r  t h e  r e a l  v a r i a b l e  p,  we f i n d  

Bk~/2]/2 I2  /~(k _ k o )  (e  "~14 1/ r k _ k  2 
~ (~~ -- ~ ~) V~ k~ (k = ~) r / ~ :  ~ + ~) 

+ I exp - -  r ]/f ~ , z  4- 4 1' a ~ = 7  e~/4" 

F o l l o w i n g  s i m i l a r  c a l c u l a t i o n s  we d e t e r m i n e  t h e  c o n t r i b u t i o n  o f  t h e  b r a n c h  c u t  c~: 

(17)  

(18) 

Hc,= r 2(k 1 - - ~ - ~ k , ) V ~ L 2  k~(~--ik ) x 

0;1.~ T e~i/4" 

The b ranch  c u t  c a i s  p a r a m e t r i z e d  in  t h e  form i ] / t -  q2 = -'p exp (Tr i /4 ) ,  w h i l e  on t h e  
l e f t  s h o r e  o f  t h e  b r a n c h  c u t  p < 0, and on t h e  r i g h t  one p > O. T r a n s f o r m i n g  in  (13)  t o  t h e  
v a r i a b l e  p,  and t r a n s f o r m i n g  t h e  i n t e g r a l  t o  t h e  segment  O, co, we o b t a i n  

H~ 3 = - -  ]/~--Tkjk i "  ' I + k2( f~ZT#~Xz,) .  .., q3/2e~h~qdp, (20)  

where q = (i + ipZ) I/z, <1,2 = k(l -- q~,2 + ip2) I/2, while Re~1, z > 0. Near the saddle 
point p 0 the exponent acquires the form ikr : kr(i - p2/2). Substituting this relation 
into (20), and putting in the pre-exponential factor p = 0, we have after integration 

- Bkk2 { k (Ill -- ]c~ } ei~< (21)  
H~.~ ~k~(k--~k~) l + k 2 V k _ - - . ~ h ( V ~ - ~ + V ~  ) 

Thus, for the given case the solution is H3 = Hc I + Hc 2 + Hc~ [the terms are determined 

by Eqs. (18), (19), (21)]. We note that for z, z 0 § 0 in relations (14) and (15), only 
those terms survive which transform to the limit in expression (21). 

Taking into account that k > 0 was considered above, we use the equation of the inverse 
Fourier transform 

C l H~ = --~ Be ~ ~[z (k) e -mczt dk~ 
0 

(22)  

690 



We carry out cuts in the complex k-plane in such a manner that the condition Re<1,2=Re[k(k - 
ikl,2R2/r2)] I/= > 0 is satisfied everywhere. These branch cuts are denoted in Fig. 3 by C 4 , 
c~ (up to the point k = iklR2/r2), and c 6. On the lines Rek = 0 and k = ik2R2/2r z, denoted 
by dashes, Imp2 = 0. The signs of ImK 2 are indicated in Fig. 3. Similarly the lines Rek = 
0 and k = ikiR2/2r 2 determine the sign-varying regions of ImK I. 

Consider initially relation (15) (for z = 0, z 0 # 0). We substitute it in (22) with 
account of the expression for A(k) from (16). Transforming part of the terms to the inte- 

gration interval k- ~, ~, we obtain 

3 5 /2  co { V 2Qzor k 1 ! ] R2 H2=Ha+ He' t la= (k,--k2)R 2 Oq) d~l kl--k~ • (23)  

X 
0 - -oo o;{[ ] } 

k -  ik 2 
He 0 + I • 

i L = B, -- Bo~. • / (~)  e ~kR~ dq, Q = It~ ~ , 
o 

Here it was taken into account that the integral over ~ converges absolutely, and therefore 
in H d one changes the order of integration over ~ and k. In H e and for ~ > 0 the replacement 
of integrals is not allowed, since the integral over k diverges for O = g. 

Investigate the term H d. If the function f(N) decreases sufficiently quickly, so that 
the basic contribution to the integral over D is related to the region ~ < R,/R 0, then L > 0 
in the integral over k. The integration contour must be closed from below. In this case 
the integration in the first term is carried out over the right-hand shore, and in the sec- 
ond - over both shores of the branch cut c 4. Following the variable replacement k = -ix2/ 

(kiR 2 ) 

40k~r3z~ ! ~--~~ sin (24)  ] x - -  

( - / r  koR2 ~ x exp -- k l R 2  / 
- -  I /  i - -  ,-::-Tcos x] dx. 

b' klr ] x 2 +. k~R 2 

We t r a n s f o r m  t h e  i n t e g r a l  o f  t h e  second  t e rm in  ( 2 4 )  

x c o s  x x2n 
2-_-~2  ex dx = (I) x+ e--~k'R2 dx, (25)  

x + klH klR 2 
o o 

I ] 1 t 1 ~ ex,~ el) (g) = ~ -- ~-~ exp dx" . 
O 

I f  k~2R 2 >> 1, one can pu t  in  t h e  f u n c t i o n s  ~x : 0. The f i r s t  i n t e g r a l  o v e r  x in  (24)  
i s  c a l c u l a t e d  a c c u r a t e l y ,  t h e r e f o r e  t h e  f i n a l  r e s u l t  i s  

R ,  

Ha HoR~klrZo 
(kl--k2) R 5 $ ](~){k~rzoehg[e~erfc(Hk--~L+ R---I/k--LI-- 2 V L] (26) 

H 4r2 ~ ~lr~ (~ k - ~  dl']. - ~ - ~  e ~ c  V ~ L  - -  ~ - ~R---r~. - 

The s t r u c t u r e  o f  e x p r e s s i o n  (26)  shows t h a t  i t  d e s c r i b e s  d i f f u s i o n  p r o c e s s e s  o f  c u r -  
r e n t s  and m a g n e t i c  p e r t u r b a t i o n s ,  g e n e r a t e d  beh ind  t h e  f r o n t  o f  t h e  shock  wave.  Thus,  f o r  a 
s o u r c e  o f  t h e  d e l t a - f u n c t i o n  t y p e  and unde r  t h e  c o n d i t i o n s  R... >> R, k~ -~ t h e  e x p r e s s i o n  in  
t h e  s q u a r e  b r a c k e t s  in  (26)  i s  w r i t t e n  as -R exp (-k~R=/4R,) /~2R,  ~ .  I t  i s  hence  seen  t h a t  
t h e  g i v e n  t e rm i s  s u b s t a n t i a l  in  t h e  r e g i o n  R ~ ~D-t, where  t h e  e f f e c t  o f  d i f f u s i o n  p e r t u r -  
b a t i o n s ,  g e n e r a t e d  i n i t i a l l y  in  t h e  n e i g h b o r h o o d  R ~ R 0, i s  n o t i c e a b l e .  At l a r g e  d i s t a n c e s ,  
i f  R >> R , ,  k~ -~ ,  t h e  g i v e n  e x p r e s s i o n  has  t h e  a s y m p t o t i c  form - e x p  (k~R0g) .  Here t h e  
b a s i c  r o l e  i s  p l a y e d  by p e r t u r b a t i o n s  o r i g i n a t i n g  f rom t h e  f r o n t  o f  t h e  e l a s t i c  wave,  where 
t h e  q u a s i s t a t i o n a r y  ( w i t h o u t  a c c o u n t  o f  t h e  g e o m e t r i c  f a c t o r )  r u n n i n g  p a t t e r n  i s  fo rmed .  
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The last term in (26) decreases at large distances as a power law (since for R § ~, ~ + --i), 
indicating the magnetic dipole character of the given term. The effective magnetic moment 
is due to the sign-varying currents, lumped in the region R s R,. 

The term H e is investigated in the region $ < 0, putting for simplicity z 0 = 0. Chang- 
ing the order of integration over N and k, we deform the integration contour to the branch 
cut c 5 . Taking into account that the integrand has no singularity at the point k = ik 2, we 

obtain 

i hS ~ . -~R0(n+i~,) ~e H~ ] (q) e-h2n~ (k2 + p)~ e dp.  ( 2 7 )  
~r o o ~ /P  ( k l -  k ~ -  p) 

C a l c u l a t i n g  t h e  i n t e r n a l  i n t e g r a l ,  we r e a c h  t h e  r e l a t i o n  
co 

He = ~ H~176 e-k2"~ S ] (N) e-k2n~ d~d [(k~ + k2) I o (s)--(k~--k,~) I~ (s)] dN, ( 2 8 )  

0 

s ~ (I~ - k~) R0 (n + I~ I)/2, 

I 1 a r e  t h e  m o d i f i e d  B e s s e l  f u n c t i o n s  o f  t h e  f i r s t  k i n d .  I t  i s  h e n c e  s e e n  t h a t  t h e  where I 0 , 
term H e describes perturbations localized near the front ($ = 0) of the elastic wave. Their 
amplitude decreases with distance by the same law as the velocity amplitude of the medium 
~r ~I. Far from the front of the ibngitudinal wave, if kiR01$ I ml and k 2 = 0, Eq. (28) ac- 

quires the asymptotic form 

He 4r1515i2 ~ --/(co) + 2-]~]-Y ~l/(B) dn " (29) 
0 

t h e r e  e x i s t  no r e s i d u a l  d isp lacements ;  then = 0. At  l a r g e  d is tances  = r ,  imp ly -  
ing that (29) is, as is the last term in (26), the quasistatic field of some effective mag- 

netic moment. 

Similarly one can study the general expressions of H z and H r for other special cases 
(z = 0, z = z 0 = 0, and others) for an arbitrary (nondecreasing) function f($). However, 
from the analysis above it is clear that at large distances the magnetic perturbations de- 
crease as a power law. Their highest value is achieved near the front of the elastic wave, 
decreasing with distance as -r -l As to diffusion processes, they can play a decisive role 
at the initial phase of the process, when the diffusion front R d ~ VD-t is ahead of the 
elastic wave, having size ~czt. At distances R ~ kl -l the elastic wave emerges ahead, and 
diffusion of the generated magnetic perturbations can predominate only near the source. 

Consider as an example the magnetic field due to radiation of an elastic wave from an 
explosive source. At the boundary of the destruction zone of the medium, at R = R0, we 
assign the radial component Orr of the stress tensor in the form 

a~, = - -  [Pc + ( P ,  - -  Pc) exp  ( - -  t~o)  1. ( 3 0 )  

Here P, is the amplitude of elastic stresses at the boundary of the destruction zone (of the 
order of the limiting rock strength at destruction), P0 is a constant of the order of the 
lithostatic pressure, and T 0 is the characteristic time of detonation evolution. The solu- 
tion of the corresponding problem of elasticity theory under the conditions f(0) = f(0) = 0 
at the wave front makes it possible to find an explicit expression for the function 

1($) = a ~-, be - ~  - -  e -2v~ [(a + b ) cos  5~ + (27(a  + b ) - -  ab}s in (5$) /6 ] ,  

Pc P* - -  Pc c~ R o ( 31  ) 
pQ -- . 

(p is the medium density, and c t is the velocity of transverse elastic waves). Using (31), 

we obtain 

P "" " ikR~ ~b c i - -~b  ci+~b 
G(k) = J / (~) e " --  ikR-~-- ~ + 2 (ikR o + i8 -- 2?) 2 (ikR o - -  i6 - -  2V)' ( 32 ) 

0 

c = 2~[2(a  + b) -- ab]lS.  

We elaborate on the case in which medium 2 is a vacuum. In Eqs. (3) and (4) the terms 
describing the field of elastic velocities in medium 2 vanish automatically in this case, 
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since D~ + ~. The velocity field in the elastic wave, reflected from the boundary with va- 
cuum, requires special treatment and is not accounted for here. We also restrict ourselves 
to calculating the stress component of the magnetic field H z for z02/r ~ ~ i. Expanding H e 
in (23) in theparameter z0/r, we have 

If~ kG(k)e -i~m~ t -  r 7----7k~ j dk. ( 3 3 )  He 2~r k -- ik 1 
--oo 

The parameter k 2 is retained in the radical expressions for'determining their signs during 
bypass of the branching point. For g > 0 the integration contour is closed from below. In 
the vanishing approximation (33) reduces to the residues at the poles k = -ia/R0, k = -(2u + 
~)/R0, since the integral over the shores of the branch cut c 4 of the first two terms in (33) 
vanishes. The residue at the pole k = -i~/R 0 of the last term in (33) vanishes, since the 
corresponding term has different signs on the shores of the branch cut c 4. The contribution 
of this term is determined by the remaining poles and the bypass of the branch cut. 

As a result of the calculation we find 

exp {~ (2? q- i5)} 5 -- i (2? .d- ]qRo) - -  t @ 

Zo ( [ ( ] / r 6 - - i ( 2 ? - i - k l R o i - - ' V ~ ) ( O - - 2 ? i ) 3 / 2 ( a - i ' b i ) ] ) }  
+ r Re {6 - ~ (~,v + klRo)} exp {~ (2V + i6)} + Be ' 

oo 

~~t~o t" x~/~g ( -  x) ~xp ( -  k~Ro~x ) Be :~ v.p.j (V]+~+VY)(i+x) dx, 
0 

ab 4? (a .-[- b) + xklRoab 
g(x)  a + x k l R  ~ __ (xk,Ro+2?)" , + 5 2  , 

w h e r e  t h e  i n t e g r a l  B0, u n d e r s t o o d  i n  t h e  s e n s e  o f  t h e  p r i n c i p l e  v a l u e ,  i s  due  t o  t h e  c o n t r i -  
b u t i o n  o f  t h e  b r a n c h  c u t  c 4. E x p r e s s i o n  ( 3 4 )  can  be  s i m p l i f i e d  i f  z 0 = 0.  F o r  kzR 0 >> a ,  2~ 
H e = HoR02klf(~)/2r, and for kiR 0 << a, 2~ H e = -HoR 0 f(~)/r [f(~) is determined in (31)]. 
The integral B 0 can be simplified if kiR0g >> i, substituting x = 0 in the denominator of B 0 
and in the function g (except the first term, having a singularity): 

ab 1F~ ( t ;  ~ ,  __ a~) - 3(a+b! 
B0 = 2~/~, I/-Z-~Ro 4 ~ / ~ / ~ o  ( 3 5 )  

(iFz is theconfluent hypergeometric function). If also ~ >> i, (35) is simplified: 

B 0 4~5/2 Fnk_~0 a + -~-~], go = a-,~ b 4y~ ( 3 6 )  

C o n s e q u e n t l y ,  f o r  zQ ~ 0 t h e  s i g n a l  d e c r e a s e s  w i t h  i n c r e a s i n g  ~ a c c o r d i n g  t o  a p o w e r  l aw 
b o t h  a h e a d  (Eq .  ( 2 9 ) )  and  b e h i n d  t h e  f r o n t  o f  t h e  e l a s t i c  w a v e .  

F o r  ~ < 0 ,  t r a n s f o r m i n g  t h e  i n t e g r a t i o n  c o n t o u r  i n  ( 3 3 )  t o  t h e  b r a n c h  c u t  c s ,  and  t a k -  
i n g  i n t o  a c c o u n t  t h a t  t h e  r e s i d u e  a t  t h e  p o l e  k = i k l ,  l o c a t e d  on t h e  b r a n c h  c u t ,  v a n i s h e s ,  
we o b t a i n  

{ !x3/2g(x) e-~Rol~lx He - -  H~176 k~R~ "~- -x  dx + ( 3 7 )  

]/ 
z 0 x3/2g (x) x'g" (z)'~ 

I n  t h e  l i m i t  k l R 0 l ~ [  >> 1, s i s  [ >> 1, we f i n d  f r o m  ( 3 7 )  t h e  a s y m p t o t i c  e q u a t i o n  

He H~ - -  - -  klr'~[5/2 { 43~. v / ' k ~ ~  ( \2--~ a) -[- nr]//lTl2z~ (a 3g~ ( 3 8 )  

We note that for z 0 = 0 (38) coincides with (29), taking into account (31). Thus, Eqs. (34)- 
(38) are in agreement with the analysis provided above. 
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Consider the terms describing asymptotic diffusion of the magnetic field. Expres- 

sion (19) must be used for z 0 = 0. We carry out the inverse Fourier transform for k 2 § 0 
with account of (32). The structure of the given expression is such that the integration 
contour must be closed in the lower part of the k-plane. Applying the transformations, 
similarly to what was done above, we obtain 

HoR~okl ]/~ { ]/" k---~o Re ( l _ ]/kilo e-.~V4) X (39)  
Hd = r2 V 6 - -  ~ (klR 0 + 2V) 

A1 eaUi/a -~ B1}, 
X ]/6-- 2?i 

2 

A, = [6--~27--&k,Ro)j ~xp - - r  -~o 

~-o (27  + i6) , 

B1 = ~ v . p .  1/{--~+~ / l  -!-. x)]/z 
0 

where the integral in the principal value sense is related to bypassing the branch cut c~, 

and the remaining terms are due to the presence of poles. If the parameter z0/r is not 
small, one must use the first term in (23). By means of the inverse Fourier transform we 

similarly reach the relation 

~R 5 B2 -- nk, R o a + k,Ro sin R V !-f~-o- + (40)  

V- +-7-. R +RoA  Zo' l l l  
oe 

Z 0 

0 

where  B 2 i s  t h e  c o n t r i b u t i o n  o f  t h e  b r a n c h  c u t  c 4, and t h e  r e m a i n i n g  t e rms  a r e  r e s i d u e s  a t  
t h e  p o l e s .  At long  t i m e s ,  when kzR , >> 1 and R , /R  0 >> a - z ,  (27)  - z ,  t h e  p o l e  t e rm s  in  (39)  
and (40)  d e c r e a s e  e x p o n e n t i a l l y .  The i n t e g r a l s  B~ and B 2 have  t h e  a s y m p t o t i c  v a h e s  

2R0g 0 
B ,  ~ V ~  (k lR, )  ~/~ ~ - -  4 n ,  ' 

R~ 
B~ = a - ~ ,  

$ 

R o 3 
2rR3/2 $ 

VF~ 
x2 k l  }:~2 

(1), =e - w  e dx ,  w =  4R---~ 
0 

The asymptotic expressions obtained describe diffusion of magnetic perturbations, while the 
term B 2 determines, as already noted in investigating relationship (26), the magnetic field 

of some effective magnetic moment of the diffusing currents. 

The analysis carried out above is illustrated by numerical calculations for z = z 0 = 0 
by Eqs. (34), (37), and (39). We used the approximation of the reduced displacement poten- 
tial [8] with P, = 5"I0 s Pa, P0 = 1.5"10s Pa, ~0 = 0.3 sec, pC~ 2 = 5"10 I~ Pa, c~ = 5 km/sec, 
R 0 = i02 m, u = 0.2. Figure 4 shows the time evolution of H z at distance r = 500 m for a 
medium with electric conductivity o = i S/m, the solid line shows the total field H d + H e , 
and the dashed line - the term H d (39). Figure 5 provides the same dependence for r = 5 km 
and a = 0.i S/m, while in the given case, as shown by the calculations, H d << H e . For geo- 
magnetic field intensity H 0 = 40 A/m the signal amplitudes are 10 -2 and 1.5-10 -4 A/m, re- 
spectively, in agreement with the data of [i, 9]. The maximum of both plots corresponds ap- 
proximately to the input moment at the registration point of the elastic wave. In this case 
we have a polarity change of the signal. Also characteristic is the presence of electromag- 

netic indicator of the elastic wave. This feature is illustrated in Fig. 6, where the ~-de- 
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pendences of the quantities H e and v are considered. Given are the dimensionless functions 
103Her/HoR0 (curve i, o = 1 S/m) and 2.102vr/cs (curves 2 and 3 for r = 500 m and 5 km). 

The analysis provided shows that elastic waves accompany geomagnetic perturbations of 
two types: those localized near the elastic wave front, and perturbations of diffusion 
character. The existence of an electromagnetic signal, preceding the acoustic (in the near- 
field zone), is related to the presence of an effective magnetic moment of the currents gen- 
erated, as well as due to diffusion of the current system. At large distances most substan- 
tial are the perturbations propagating with the longitudinal wave. Their amplitude decreas- 
es as r -z, and the time dependence is correlated with acoustic quantities, but shifted "in 
phase." This nature of the signal corresponds to experimental data. The features noted cor- 
respond to any shape of seismic source function. 

The author is grateful to S. Z. Lunin for a number of useful comments. 
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DEFORMATION MECHANISM OF A SHOCK RADIATING FRONT DURING ITS MOTION 

IN A CHANNEL 

S. D. Savrov UDC 533.6.011 

:Shock front deformation by a powerful shockwave at the walls of a channel filled with 
inert gas was detected by Shreffler and Christian [i]. A quantitative description of this 
phenomenon and, even more, a prediction of the conditions for its origination are barely 
accessible even now. For instance, the detection of such a shock front deformation in a 
laboratory shock tube turned out to be unexpected [2]. 

The first attempt at a satisfactory explanation of the front deformation phenomenon was 
by Taganov [3] on the basis of an analogy between the near-wall curvature of the front and 
the phenomenon of viscous boundary layer separation. The starting point in this model was 
the assumption about the presence of a "thermal layer" in front of the shock near the wall 
heated by radiation. Such a model is in good agreement with experiments in which the "ther- 
mal layer" is produced artificially, by heat transmission from a hot burner or a discharge 
of a metallic wall [4-7]. Under these conditions, the origination of the "thermal layer" is 
clearly distinct from the conditions of its origination in shock tubes or in a powerful ex- 
plosion under the surface of the earth. Evaporation of the channel wall is detected ahead 
of the shock front in a shock tube [2] at quite moderate brightness temperatures (~15 kK). 
The presence of vapors complicates the problem. 

A detailed investigation showed [8] that the vapor layer is thin relative to the chan- 
nel diameter, and at first glance this permits a bifurcation model that is the development 
of the scheme presented in [3] to be applied to describe the front deformation. 

The flow diagram for such a model is displayed in Fig. I, where 1 is the tangential sur 
face, 2 is the unperturbed shock front, 3 is the secondary shock front, 4 is the oblique 
shock, 5 is the boundary of stream collapse, and 6 is the near-wall vapor layer. 

The characteristic pattern of bifurcation development in a laboratory shock tube is re- 
presented in Fig. 2. The tube diameter is 150 mm, the length of the xenon-filled channel is 
i000 mm. The wall material is stainless steel. The initial pressure in the xenon is 13.3 
kPa, the shock Mach number is M = 17. At the end of the channel the shock collides with a 
glass plate which permits determination of its front during observations of the process on a 
slit photoscanner from the shock endface (Fig. 2, where 1 is the time of shock entrance into 
the xenon through the separating diaphragm from Lavsan, 2 is the image of the trajectory of 
the line of intersection of the shock front flanks with the channel walls on the photoscan, 
3 is the impact of the front on the glass plate). Despite the clear pattern of the shock 
front deformation phenomenon, a quantitative analysis of the parameters by the scheme of 
Fig. 1 is fraught with difficulties. 

It is seen from additional experiments that under the same initial conditions in a long 
channel (3 m) propagation of the front deformation to the channel axis ceases after shock 
traversal of a distance of 6-8 calibers of the tube channel. The deformed shock front sur- 
face emerges into the stationary mode. Such a mode had not been assumed earlier in the 
scheme in Fig. I. The shock front deformation in [I, 4-10] was nonstationary. 

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, 
pp. 30-33, September-October, 1989. Original article submitted May 4, 1988. 
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